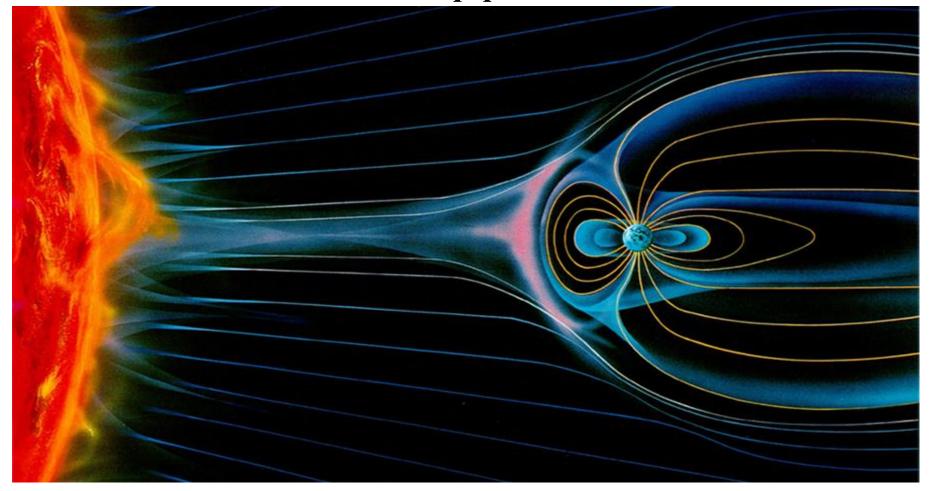

Магнитная активность в полярной шапке как индикатор космической погоды - история РС индекса

О.А.Трошичев

olegtro@aari.ru

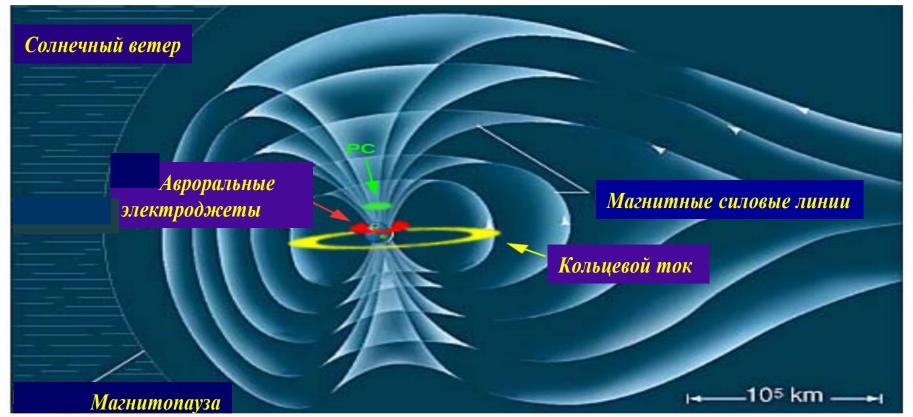
Полярные чтения – 2022 ААНИИ, 18 -20 мая 2022 г.

Космическая погода



Термоядерные реакции, происходящие в ядре Солнца, являются источником непрерывной эмиссии солнечной плазмы (миллиарды тонн супергорячего газа, содержащего заряженные частицы) и электромагнитного излучения в космическое пространство. Комплекс явлений и процессов в космическом пространстве, обусловленных этими эмиссиями, называют космической погодой.

Основные агенты солнечной активности, определяющие космическую погоду:


- солнечная радиация (тепло и свет)
- непрерывное излучение низкоэнергичной солнечной плазмы (солнечный ветер)
- выбросы высокоэнергичнной энергичной плазмы, включающие интенсивные магнитные поля связанные с солнечными вспышками (возмущённый солнечный ветер)
- потоки высокоэнергичных солнечных протонов («солнечные протонные события»)

Магнитосфера Земли

- Форма и размер магнитосферы Земли определяются параметрами солнечного ветра, такими как скорость и плотность солнечной плазмы и переносимое плазмой магнитное поле Солнца («межпланетное магнитное поле ММП»).
- В обычных «спокойных» условиях дневная граница магнитосферы находится на расстоянии $\sim \! 10\text{-}12$ Re от Земли, утренняя и вечерняя границы на расстоянии $\sim \! 15$ RE, «хвост магнитосферы» простирается на десятки RE (где RE –радиус Земли).
- В возмущённых условиях форма и размеры магнитосферы меняются (дневная граница магнитосферы может приближаться к Земле на расстояние до ~6 RE)

Магнитосфера и магнитосферные возмущения

- Вторжение мощных потоков заряженных частиц в полярную атмосферу приводит к сильной ионизации атмосферы на высотах ~ 100 км, визуальным проявлением чего являются полярные сияния («аврора»). Поэтому эти частицы называют обычно авроральными частицами, а связанные с ними явления авроральными возмущениями (или магнитосферными суббурями).
- Если воздействие возмущённого солнечного ветра на магнитосферу длится достаточно долго (более часа), то из частиц, дрейфующих вокруг Земли, формируется кольцевой ток. Этот ток, текущий в западном направлении, генерирует во внутренней магнитосфере магнитное поле, противоположное земному магнитному полю. В результате на всей Земле наблюдается сильное уменьшение магнитного поля (магнитная буря).

Магнитосферные возмущения оказывают сильное воздействие на все технические аспекты жизнедеятельности человека в высоких широтах.

Полярные сияния


Процессы в магнитосфере контролируются магнитным полем Земли, поэтому появление сияний определяется геомагнитными координанами: они наблюдаются в полосе геомагнитных щирот $\Phi = (65 \pm 5)^{\circ}$, которую называют «авроральной зоной». Во время магнитных бурь, когда геомагнитное

во время магнитных оурь, когда геомагнитное поле сильно ослабевает, полярные сияния могут наблюдаться даже на широте Москвы.

Кольский п-ов

Антарктика

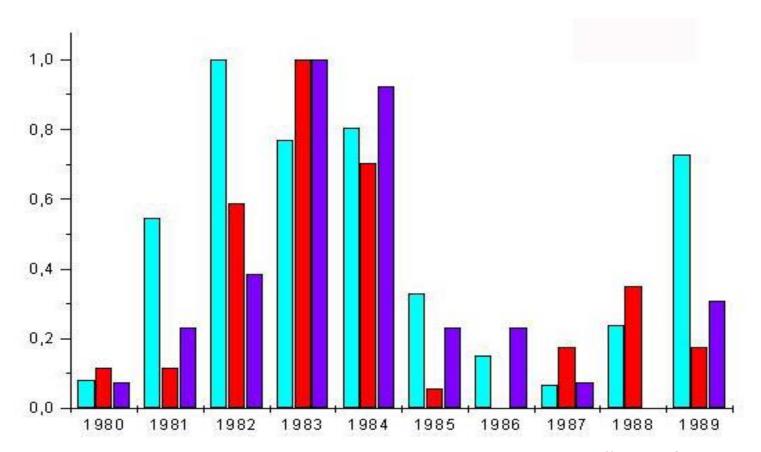
Полярные сияния в Санкт-Петербурге

Технологические эффекты воздействия космической погоды

Магнитосферные возмущения (магнитные суббури) оказывают прямое или косвенное воздействие на различные аспекты жизнедеятельности человека такие кака:

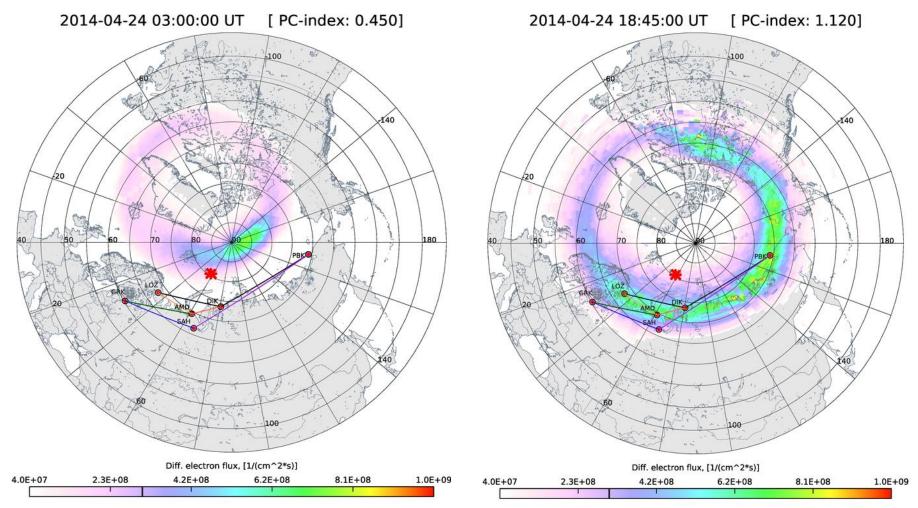
выход из строя аппаратуры на космических аппаратах,

нештатное функционирование связных, радиолокационных и радионавигационных систем, нарушения в работе энергетических систем и трубопроводов,


радиационное облучение экипажей самолётов и пассажиров на высокоширотных авиатрассах, аномальное развитие атмосферных процессов,

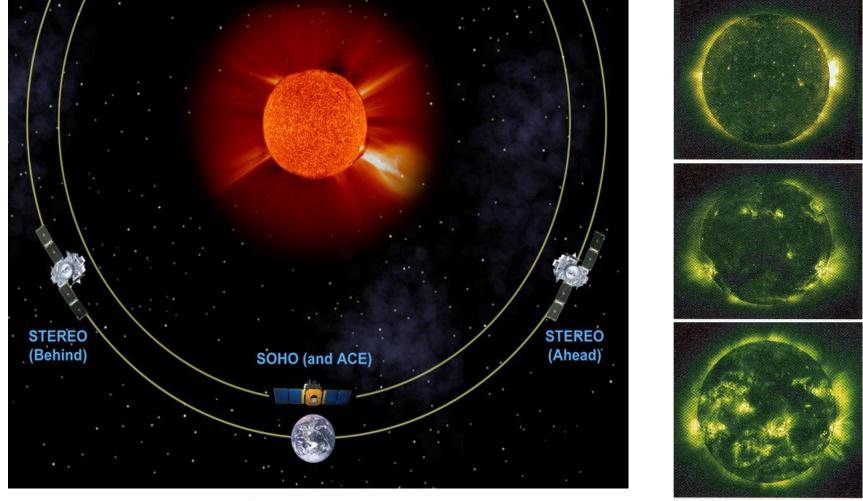
воздействие на самочувствие и здоровье человека.

Таким образом, проблема космической погоды связана с широким кругом задач, имеющих как хозяйственное, так и оборонное значение.


Космическая погода и здоровье человека

Показана связь между индексом магнитной активности *КР* (голубые колонки) и гипертонической болезнью (красные колонки) и ишемическая болезнь сердца (фиолетовые колонки) у жителей пос. Баренцбург (архипелаг Шпицберген) за период с 1980 по 1989 гг. [Белишева и др, 1995, Белишева, 2016].

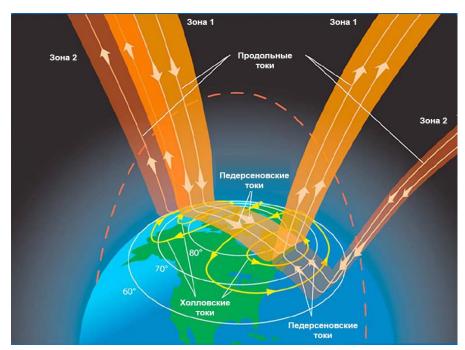
В целом, можно с уверенностью утверждать, что в условиях Крайнего Севера космическая погода оказывает существенное влияние на здоровье и самочувствие человека, несмотря на явно индивидуальный характер реакции разных людей на различные проявления космической погоды. Для решения задач освоения АЗРФ требуется целенаправленное и полномасштабное изучение этой проблемы.

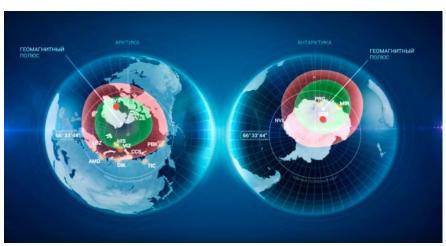

Расположение авроральной зоны в спокойные и возмущённые периоды

Процессы в магнитосфере контролируются магнитным полем Земли, поэтому авроральная зона в американском секторе проецируется на географические широты ϕ ~57° (южный берег Гудзонова залива), тогда как в Российской Арктике зоне (АЗРФ) авроральная зона располагается на географической широте ϕ >70° (побережье Северного Ледовитого океана).

Поэтому США столкнулись с проблемой космической погоды ранее других стран.

Методы прогноза космической погоды




Прогноз с опережением 1-3 дня (определяется скоростью солнечного ветра: $400 \div 2000$ км/сек)

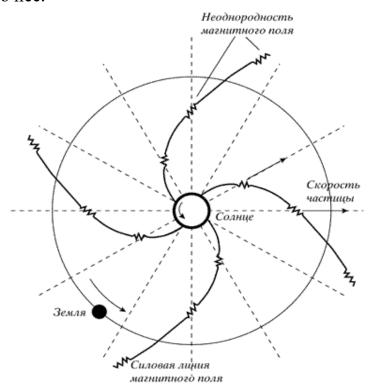
- Астрономические наблюдения за активностью Солнца (солнечные радиотелескопы),.
- Спутниковые наблюдения за Солнцем за пределами магнитосферы « SOHO», ,«CTEREO» (Solar Terrestrial Relations Observatory); HELICATS (Heliospheric Cataloguing, Analysis and Tecnique Service) –совместный проект Европейской Космической Ассоциации (ESA) и NASA).

Количественный прогноз с заблаговременностью ~ **20-55 мин** по измерениям параметров солнечного ветра на борту спутника «АСЕ» в точке Лагранжа

Диагностика и текущий прогноз состояния магнитосферы по данным о магнитной в полярных шапках (РС индекс)

Как показали измерения на спутниках, на полярной границе аврорального овала постоянно существует система продольных электрических токов, которые замыкаются через полярную ионосферу и создают в полярных шапках Земли магнитные возмущения (магнитную активность).

Исследования, выполненные в ААНИИ показали, что величина этой активности определяется параметрами взаимодействующего с магнитосферой солнечного ветра: скоростью солнечного ветра и межпланетным магнитным полем. На этом основании был разработан PC—индекс магнитной активности в полярных шапках [Troshichev and Andrezen, 1985].


Последующие исследования показали, что поведение PC индекса определяет развитие и величину магнитосферных возмущений [*Troshichev et al. 1988*].

В 2013г *PC* индекс был одобрен Международной Ассоциацией Геомагнетизма и Аэрономии (МАГА) в качестве нового индекса магнитной активности, который «характеризует энергию, поступающую в магнитосферу в процессе взаимодействия магнитосферы с солнечным ветром».

Оперативная оценка энергии геоэффективности солнечного ветра по данным наземного РС индекса

В настоящее время PC индекс рассчитывается в режиме реального времени в сотрудничестве с Космическим Институтом Датского Технического Университета (DTU Space) по данным двух станций Туле в Гренландии (PCN) и Восток в Антарктике (PCS). (См. < http://pcindex.org)

В ~20% суббурь *PC* индекс, характеризующий реальное состояние магнитосферы, не соответствует данным измерений спутников в точке Лагранжа. Это означает, что солнечный ветер зафиксированный спутником в точке Лагранжа, не контактировал с магнитосферой, т.е. прошёл мимо неё.

Resolution No. 2 (2021): Polar Cap (PC) index IAGA, noting

that polar cap magnetic activity is not yet described by existing IAGA geomagnetic indices;

Considering

that the **PC index** constitutes a quantitative estimate of geomagnetic activity at polar latitudes and **serves** as a proxy for energy that enters into the magnetosphere during solar wind-magnetosphere coupling;

Emphasising

that the usefulness of such an index is dependent on having a continuous data series;

Recognising

that the PC index is derived in partnership between the Arctic and Antarctic Research Institute (AARI, Russian Federation) and the National Space Institute, Technical University of Denmark (DTU, Denmark);

Recommends

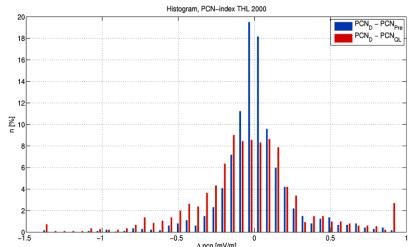
use of the PC index by the international scientific community, and

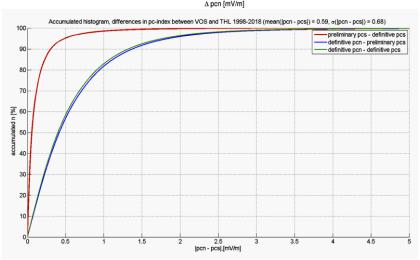
Urges

that all possible efforts be made to maintain continuous operation of all geomagnetic observatories contributing to the PC index.

РС индекс может успешно использоваться в целях количественного мониторинга и текущего прогноза состояния магнитосферы при решении широкого круга задач, имеющих как хозяйственное, так и оборонное значение.

РС индекс - История международного




Спасибо за внимание!

Предварительный и окончательный РС индекс

Согласно требованиям МАГА, все «preliminary» индексы, рассчитанные по данным текущих магнитных наблюдений, должны быть затем пересчитаны с учётом всех возможных погрешностей допущенных в ходе наблюдений и вычислений. Во Только полученные в итоге «definitive» индексы могут использоваться во всех последующих анализах. В 2021 году был выполнен расчёт «окончательных» РСN и PCS индексов за период с 1997 по 2020 гг. Сопоставление предварительных и окончательных PCN и PCS индексов показало их хорошее соответсствие. Как результат, «окончательные» PCN и PCS были одобрены МАГА в августе 2021 г.

Resolution No. 2 (2021): Polar Cap (PC) index

IAGA, noting

 that polar cap magnetic activity is not yet described by existing IAGA geomagnetic indices;

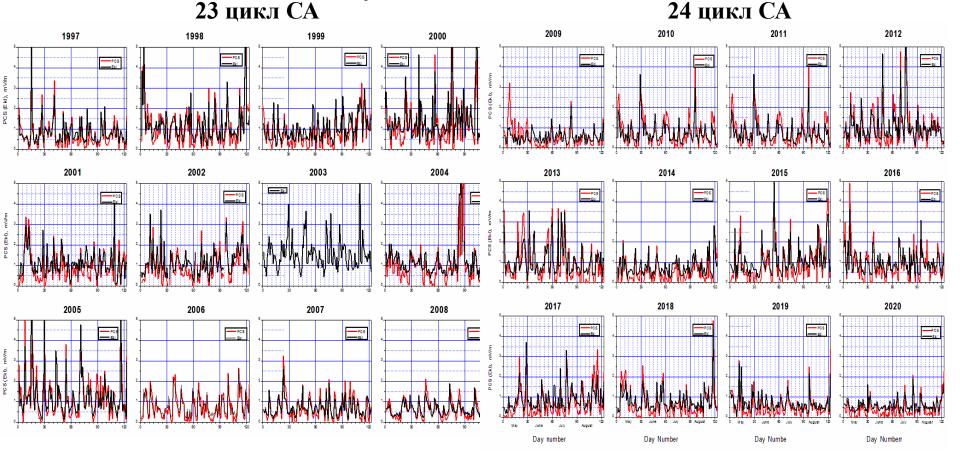
Considering

 that the Polar Cap (PC) index constitutes a quantitative estimate of geomagnetic activity at polar latitudes and serves as a proxy for energy that enters into the magnetosphere during solar windmagnetosphere coupling;

Emphasising

 that the usefulness of such an index is dependent on having a continuous data series;

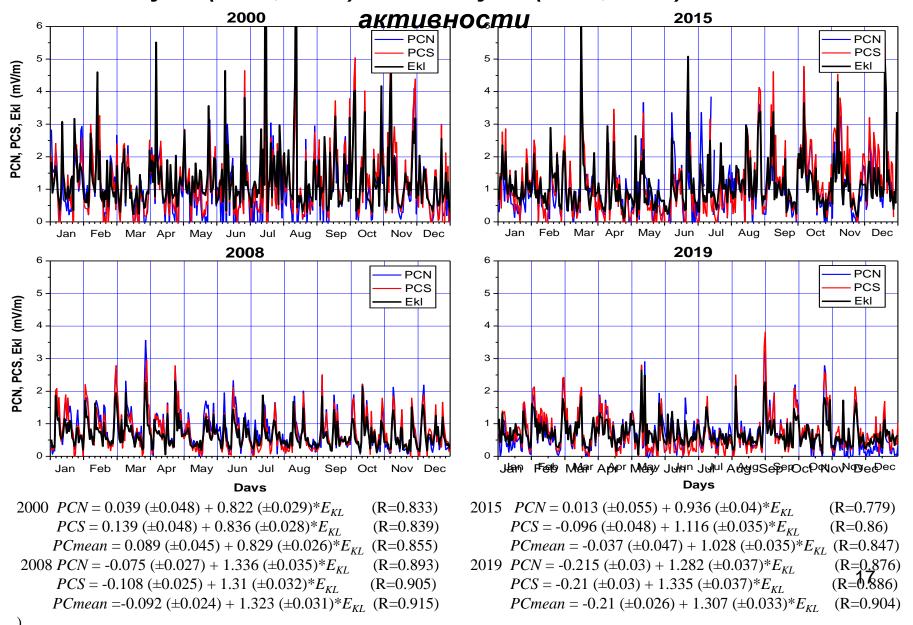
Recognising


 that the PC index is derived in partnership between the Arctic and Antarctic Research Institute (AARI, Russian Federation) and the National Space Institute, Technical University of Denmark (DTU, Denmark);

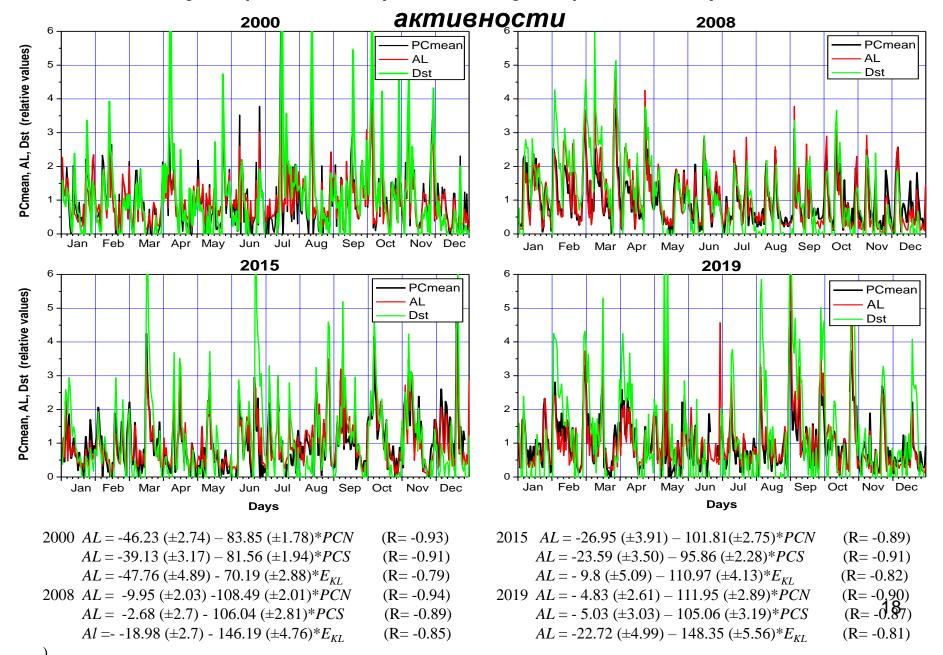
Recommends

use of the PC index by the international scientific community, and

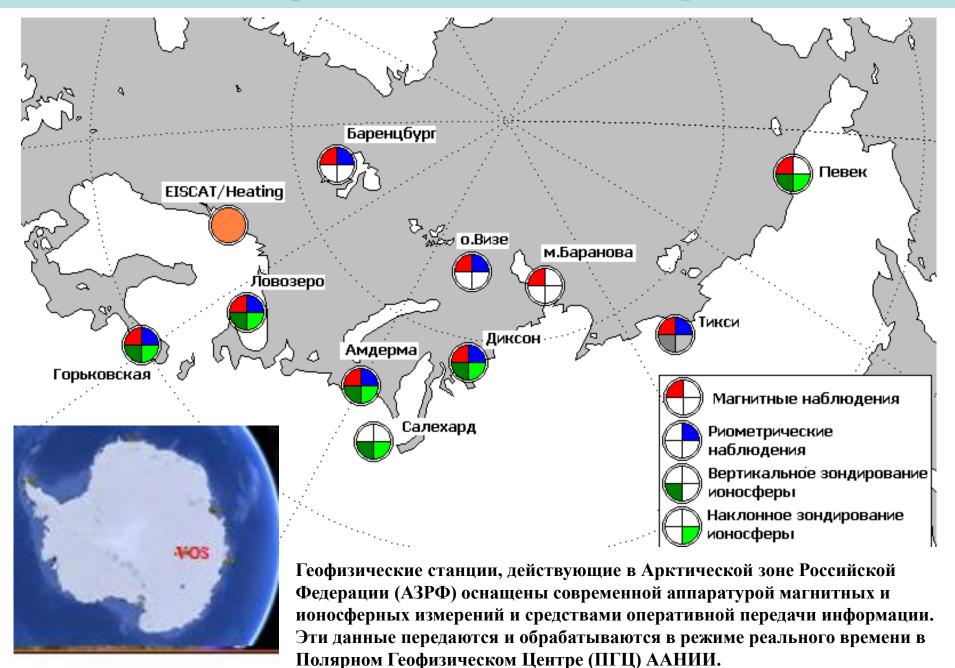
Urges


 that all possible efforts be made to maintain continuous operation of all geomagnetic observatories Поведение среднесуточных величин поля солнечного ветра EKL и РСиндекса
в ходе 23/24 циклов солнечной активности

Расчёт РС индекса осуществляется по данным магнитных наблюдений в полярных шапках с использованием «калибровочных» коэффициентов α (intersection), β (slope) и φ (угол между линией Земля-Солнце и направлением конвекции в полярной шапке), которые определяют соотношение между величиной магнитной активности в полярной шапке и электрическим полем $E_{KL} = V_{SW} B_T^2 sin^2(\theta/2)$. Эти калибровочные коэффициенты были определены по данным магнитных наблюдений и измерений параметров солнечного ветра за 1997-2005гг. (23-ий цикл СА). Целью данной работе было рассмотрение возможности использование этих же калибровочных коэффициентов ходе 23 цикла СА, чтобы убедиться в их стабильности.

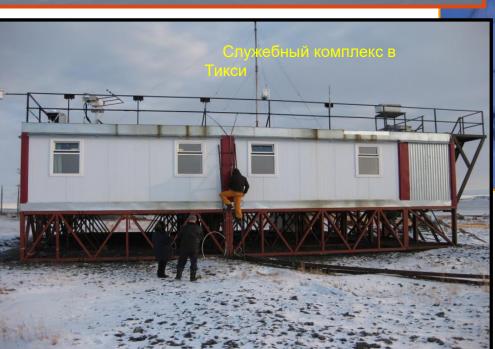

РСиндекса

в зимней и летней полярных шапках (PCN, PCS) на фазе максимума (2000, 2015) и минимума (2008, 2019) солнечной

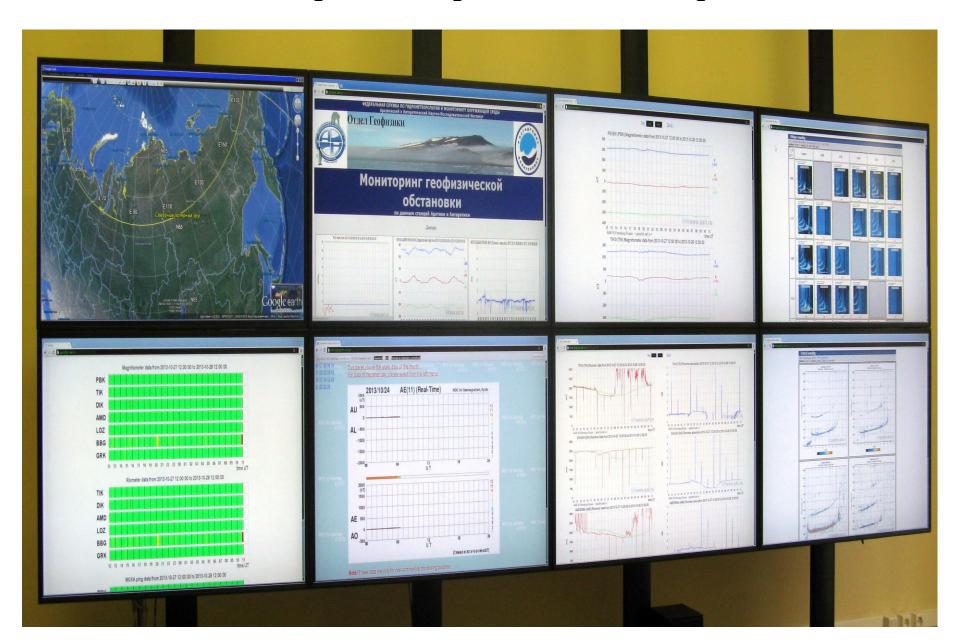


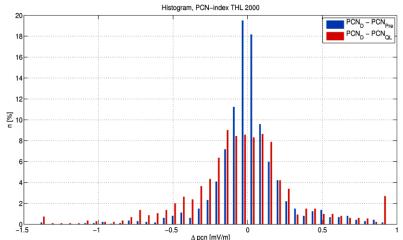
фазе

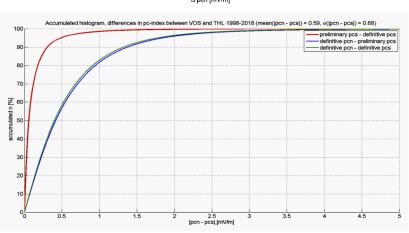
максимума (2000, 2015) и минимума (2008, 2019) солнечной


Сеть геофизических наблюдений в Арктике

Сеть геофизических наблюдений в Арктике


(создана в 2009-2014 гг.)




Полярный Геофизический центр

Definitive PC индекс

Согласно требованиям МАГА, все «preliminary» индексы, рассчитанные по данным текущих магнитных наблюдений, должны быть затем пересчитаны с учётом всех возможных погрешностей допущенных в ходе наблюдений и вычислений. Только полученные в итоге «definitive» индексы могут использоваться во всех последующих анализах. В 2021 году был выполнен расчёт «definitive» PCN и PCS индексов за период с 1997 по 2020 гг. Сопоставление «preliminary» и «definitive» PCN и PCS индексов показало их хорошее соответствие. Как результат, *PCN* и *PCS* были окончательно одобрены МАГА в августе 2021 г.

Resolution No. 2 (2021): Polar Cap (PC) index IAGA, noting

 that polar cap magnetic activity is not yet described by existing IAGA geomagnetic indices;

Considering

 that the PC index constitutes a quantitative estimate of geomagnetic activity at polar latitudes and serves as a proxy for energy that enters into the magnetosphere during solar wind-magnetosphere coupling;

Emphasising

 that the usefulness of such an index is dependent on having a continuous data series;

Recognising

 that the PC index is derived in partnership between the Arctic and Antarctic Research Institute (AARI, Russian Federation) and the National Space Institute, Technical University of Denmark (DTU, Denmark);

Recommends

use of the PC index by the international scientific community, and

Urges

 that all possible efforts be made to maintain continuous operation of all geomagnetic observatories contributing to the PC index.